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STATUS REPORT - JUNE 1974

NASA AMES GRANT NGR 37-008-003*

During the subject reporting period the research discussed herein was advanced by

a graduating mechanical engineering senior, Daniel W. Drago, and the principal investi-

gator. As a consequence of the previously unprogrammed investigation of some interesting

aspects of radiative transfer calculations for non-unity index of refraction (discussed

below), a request for extension of the completion date of the present research to August 31,

1974 was requested and recently approved. Mr. Drago is remaining at the University as a

graduate student and will be participating through the grant termination date.

In the present reporting period two papers have been submitted for publication and

another paper published. As reported in the last status report, a paper by R. S. Reddy and

the principal investigator had been submitted to and accepted for publication by the AIAA

Journal. This paper, which has since appeared in the Journal (reference 1), provides an

approximate analytic solution for the unsteady radiative heating of a highly scattering

medium under constant heat flux boundary conditions.

A more recent paper prepared under this grant (reference 2) explores the accuracy

of two-flux methods (such as that employed in reference 1) in representing the reflectance,

radiative flux and radiative flux divergence of highly scattering materials. The influence

of anisotropic scattering on these parameters was also considered. This work, not accepted

for presentation at the 1974 Heat Transfer and Fluid Mechanics Institute, has been revised

and submitted for publication in the AIAA Journal. In addition to defining conditions of

*The NASA Technical Officer for this grant is Dr. Phillip R. Nachtsheim, NASA
Ames Research Center, Moffett Field, CA 94035.
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applicabilty of approximate methods, this work clarifies relations between transfer

equation solutions and approximate methods, and presents new results for anisotropic

scattering.

Still more recently, while evaluating the capabilities of the NANITERAD

program in dealing with radiative transfer in media with non-unity refractive index,

solution intensities were found to vary erratically with quadrature order. Through an

approximate discontinuity model and transfer equation solutions we have shown that,

for a fixed quadrature, the quadrature accuracy (and hence transfer equation solution

accuracy) varies erratically with refractive index rather than smoothly as implied in the

literature (reference 3 for instance). The discontinuity model shows that under certain

conditions the accuracy of Gaussian quadrature may decrease with increasing quadrature

order rather than increase as found with continuous distributions. The observed error

pattern is due to the relative position of the critical angle for total internal reflection

and its neighboring quadrature directions. It was found that the errors induced by the

discontinuity are amplified in an iterative solution due to the scattering term in the trans-

fer equation. A published solution (reference 3) for refractive index of 1.4 was shown to

exhibit a large discontinuity error as predicted by the model. As a result of this study we

are revising our calculation procedures to incorporate separate quadratures within and

outside the critical angle for total internal reflection. For a continuous distribution the

accuracy of the numerical integration is reduced by using several quadrature formulae in

place of a single quadrature application with the same total number of directions. How-

ever for the non-unity index cases, this loss may be far exceeded by the gain in accuracy

achieved by discontinuity error avoidance. A discussion of the errors incurred by the use

of single quadrature has been presented in a paper submitted to the ASME Journal of Heat
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Transfer (reference 4). We have been advised that the general reaction of the ASME

reviewers was favorable. The paper has been resubmitted incorporating certain revisions

as requested.

The formation of a minimum in the magnitude of reflected intensities near the

rear surface of an absorbing and scattering slab is considered in Appendix A of this

report. The intensities decrease, stablize and increase as the front surface is approached.

This unexpected phenomenon was first considered to occur because of a programming

error. A simple analytical distribution model applied to the transfer equation however

verified the existence of a dip under certain conditions. Model and transfer equation

results are also compared in the Appendix.

A study of the most suitable quadrature formulae combination with a limited

number of quadrature directions for non-unity index of refraction has been completed

and appears as Appendix B to this status report. This study shows that the most accurate

method of formulae application for cases with significant discontinuities uses three sepa-

rate quadratures over the range -1<4<1, one each within the positive and negative

regions of total internal reflection and the third between the other two. The appendix

also provides tabulated error results for various single and multiple formulae applications.

The NANITERAD program is at this time regarded as fully operational. A

number of cases have shown consistent and reasonable behavior for non-unity refractive

index although the results available in the literature for comparison are quite limited.

The most convincing check was with a fifth order quadrature calculation given in

reference 4. The detailed radiation field agreed with the NANITERAD calculations

within reading errors dictated by the small size of the figure of the reference.
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APPENDIX A

THE CONDITIONS FOR INTENSITY EXTREMA

While exploring various aspects of the transfer equation results, the radiative

intensities reflected from the rear surface were thought to monotonically increase or

decrease towards the front surface. Occasionally the reflected intensities were found

to decrease near the rear boundary, stabilize, and increase as the front boundary is

approached, forming a distinctive dip. A simple model of the transmitted and reflected

intensities is applied to the transfer equation, identifying conditions which allow the

minimum intensity to exist between the boundaries.

The intensities at any distance y from the front surface are modeled as:

I -(y), M< 0
1 (P, y ( O (A I)

S+(y),. > 0

where 1 +(y) is the transmitted intensity and I (y ) the reflected intensity.

By using (Al) in the transfer equation while neglecting the emission term, and

considering the variation of I (y) in the direction corresponding to -j 4*1 the slope of

I -(y) becomes (for I I * 1 0):

S(y) 1 i(y) F - (K +(2
dy I *1L~y)  (A2)

As a special case, with pure absorption (A2) reduces to:

dl (y) _ K -(y)
dy(A3)

In this case the minimum occurs at the front surface since the slope is always positive or

zero.
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In a second special case, with pure scattering (A2) yields:

d -) _ I (Y) S\ 1- 1-(Y) (A4)
dy I 1- -y) J

Since the right hand side of A4) is always negative or zero for a flux incident at y = 0,

the minimum of 1 (y) is at the rear boundary. Thus in either the pure absorption or pure

scattering case the dip;. may not occur.

For non-vanishing scattering and absorption coefficients an extremum of I -(Y)

occurs when the right side of (A2) vanishes at some point within the medium. At that point

(A2) indicates a condition for an extremum.to be:

I -(y) 1
1 (y ) K (A5)

It may be shown using (A2) and a similar equation for the slope of I (y) that the

second derivative of I _() is always positive or zero:

d2 1 (y) d l(y) S dl (Y) S

dy2  dy dy

SS S
= [-() (K + ) -+1 (y) ()] (K + Z)

S S S- I-1(Y) (K + ) (Y) ) ()
or d2 1-(y)= I(y) (K2 + K S) (A6)

d y2  i* 12

Since the right side of (A6) is always non-negative, this precludes the possibility of an

extremum being a maximum rather than a minimum. Therefore, if the slope of 1 (y) at

the rear boundary (Y tYo ) is shown to be negative or zero, a dip will not occur. This

slope at the rear surface may be calculated to determine the conditions necessary for the

slope to be positive, and thus to provide a third condition for the formation of the dip.
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The intensities at the rear surface are modeled as:

RB I(Y) , 1<0
1 ,o) o (A7)

I (Yo) ,4>0

where RB is the rear surface reflectivity.

Evaluating (A2) at yo using (A7) produces the slope of I (Yo):

d -(yo) +(yo) +S
dy I-* RB(K + (A8)
dy * .

A positive slope of -(Yo ) exists when:

RB > (A9)
2B K2-+ .

S

Thus for the model given by (A I) and A7), three conditions must be satisfied for a

dip to exist: non-zero scattering and absorption coefficients; a sufficiently large RB

consistent with (A9); and a small I -(y) consistent with (A5). The latter condition is

satisfied only when the optical thickness is large enough for I -(Y) to obtain its minimum

within the boundaries.

The criterion for a minimum from (A9) is evaluated using transfer equation solutions

in Figure Al. This figure shows the conditions under which minima were found in the solu-

tions. Due to the deviation of the actual intensity field at the rear surface from that

modeled in (Al), the condition for a dip based on (A9) has been compared to transfer

equation solutions demonstrating a dip in a majority of the quadrature directions. The

data from the solutions has been divided into three categories: 1) None of the eight

Gaussian quadrature directions contain a dip; 2) At least one direction displays the mini-

mum; and 3) Five or more directions have a dip. As seen in Figure A1, the minimum RB
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necessary to produce dips in five directions closely follows the trend of the pattern set by

cond-ition (A9).

In Figure A2 the optical depth, 7, of the minimum from the rear surface is clearly

seen to be a function of 4 . A similar pattern of minima is evident for each case studied.

This pattern may be qualitatively explained by referring to equations (A2) and (A6).

Assuming a directionally independent value for the reflected beams at the rear boundary

and an actual RB larger than the RB-critical from (A9), equation (A2) indicates the

reflected beams diminish most rapidly parallel to the boundary. Equation (A6) is even

more dependent on 4 than (A2) due to its inverse relationship to 2. As such, a plot of

the intensity of a beam directed close to parallel to the boundary would demonstrate much

larger curvature, and hence would stabilize and begin to increase within substantially

less distance from the rear surface, than a beam more nearly normal to the boundary.

A second observation from Figure A2 is that the depth of the minimum from the

rear surface in each Gaussian direction generally increases as the ratio of the actual RB

to the model RB.critical increases, a pattern further explored in Figure A3. Here the

depth of the minimum in the direction closest to normal to the boundaries of the medium

is plotted against the ratio of the RB's. The distance of the minimum from the rear surface,

7, rapidly increases as the rear surface reflectivity is increased. Lines with constant

values of k/s have generally increasing slope as the value of k/s decreases, with the

smallest plotted value of k/s producing a nearly vertical line. The actual intensity field

becomes more closely approximated by the model in (Al) as k/s approaches zero, and as

such increases the accuracy of prediction based on (A9). Thus, this study shows that minima

should be expected to occur over a wide range of conditions for highly scattering media.
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APPENDIX B

THE ACCURACY OF GAUSSIAN QUADRATURE COMBINATIONS

As discussed in [4], a significant error may be generated in the numerical approxi-

mation of the scattering integral in the transfer equation when a single quadrature is used

for media with refractive indices greater than one. The error arises from the presence of

a discontinuity in the intensity field at the critical angle for total internal reflection due

to a Fresnel boundary. Figure B1 shows the computed values of transmission across such a

boundary when the quadrature is applied over three different regions. The first and second

applications, which are indifferent to the presence of the discontinuity, result in large and

erratic errors for small to medium quadrature orders. The third application restricted to the

region of transmitted flux only, demonstrates high accuracy even for low quadrature order

and smoothly converges to the exact value.

The overall accuracy in the transfer equation solutions when using single quadrature

applications has been shown to follow a similar pattern to that found with the first two

applications used in Figure BI [4]. In this appendix the question of which combination of

Gaussian quadratures is most suitable for radiative transfer calculations involving discon-

tinuities at the critical angle is considered, with the overall medium reflectance providing

a measure of combination quality. The quadrature combinations are applied such that the

quadratures selected are bounded by the critical angle and have a combined total of no more

than sixteen quadrature points. Three regions of 4 were defined for the application of

.quadrature formulae to the scattering integral:
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Region I: -1 P<--lc

Region II: -vc < < Ic (B1)

Region 11l: 4c < 1 _ 1

where 4 c is the cosine of the critical angle of total internal reflection:

C =1 - ()2 (B2)

and N the refractive index of the medium. Typically, identical quadrature orders were

applied to Regions I and III, with Region II utilizing the remainder of the sixteen quadrature

directions.

The notation used here for the quadrature formulae application is:

X/Y/X (B3)

where X is the quadrature order of Regions I and Ill, and Y is the order of Region II. For

example, fourth order quadratures may be used in Regions I and III with eighth in Region II,

as expressed by 4/8/4.

Reflectance results for various quadrature combinations used in approximating the

transfer equation scattering integral are presented in Table B I. Selected combinations were

run for two refractive indices to insure that the relative magnitudes of the reflectance values

were not significantly affected by a refractive index change. The same reflectance pattern

did appear in both cases, with 5/3/3/5 (Region II was divided at i- = 0 with two quadratures

applied) and 4/8/4 nearly identical, 6/4/6 lower, and 5/6/5 between. As predicted in [4],

tenth quadrature was found to have a large error at N = 1.4 while sixteenth was relatively

accurate.

As shown in Figures B2 and B3, a reference reflectivity was determined from three

sequenced test values found for each refractive index case. These values came from

quadrature combinations of 2/4/2, 3/6/3, and 4/8/4, with the values of reflectivity
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plotted as a function of the inverse number of total quadrature directions. The reference

value was found by extrapolating a line faired on the three test points to the zero value of

the abscissa.

Study of these figures and the Table show that both 5/6/5 and 5/3/3/5 are within

. 12% of the reference values at both refractive indices, with the average percentage

error smallest for the 5/6/5 combination. Thus the 5/6/5 application was ultimately

selected for use in the transfer equation solutions for cases with non-unity index of

refraction. A single quadrature application of sixteenth order was retained for the N = 1.0

cases.



TABLE BI

TABLE OF REFLECTANCE VALUES AND ERRORS
FOR SEVERAL QUADRATURE CO3BINATIONS

(J= 1.0 0 K

=1.0 X=0

B .o3  
/

QUADRATURE N = 1.4 N =1.2
-COMBINATION R E() R E(%)

4/8/4 .290044 -.0807 .344580 -.1570

5/3/3/5 .290001 -.0659 .344429 -.1131

5/6/5 .289466 .1187 .344042 -. 0006

6/4/6 .288170 .5659 .343205 .2427

10 .220740 23.83 -

16 .288401 .4862 --

2/4/2 .290637 -.2854 .345852 -.5267

3/6/3 ,290197 -.1335 .344879 -. 243 9

-Reference .289810 0 -. 344040 0
Value
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